Deepdrive docs
  • Deepdrive
  • vendor
    • openai
      • README
        • PPO2
        • A2C
    • tensorflow
      • Surgically extracted MobileNetV2 from tensorflow/models @ 84da970ee43c04fbd53a1db3c824ea32cec8936b
        • TensorFlow Research Models
          • slim
            • nets
              • README
          • Running the TensorFlow Official ResNet with TensorRT
  • Deepdrive
  • docs
    • tutorial
      • cloud
        • Cloud setup
      • uepy
        • UnrealEnginePython Tutorial
      • leaderboard
        • Submitting to the Deepdrive leaderboard
    • Miniconda
  • README
Powered by GitBook
On this page
  • Simulator requirements
  • Optional - baseline agent requirements
  • Install
  • Examples
  • Key binds
  • Observation data
  • Benchmark
  • Dataset
  • Architecture
  • Frame rate issues on Linux
  • Tensorflow install tips
  • OpenGL
  • Development

Was this helpful?

Deepdrive

Nextvendor

Last updated 5 years ago

Was this helpful?

The easiest way to experiment with self-driving AI

Simulator requirements

  • Linux

  • Python 3.6+

  • 10GB disk space

  • 8GB RAM

Optional - baseline agent requirements

  • CUDA capable GPU (tested and developed on 970, 1070, and 1060's)

  • 1.7 <= Tensorflow < 2.0

Install

  1. Clone

git clone https://github.com/deepdrive/deepdrive
cd deepdrive

Optional - Activate the Python conda env or virtualenv with Tensorflow installed, then

Note: If you use Anaconda (we recommend Miniconda) - only use pip install in your deepdrive conda environment, never conda install

  1. Install

python install.py  # Do not run as sudo! Use Miniconda or virtualenv to install without sudo.

Cloud

Examples

Forward-agent

python example.py

Synchronous forward-agent

python example_sync.py

Mnet2 baseline agent

python main.py --mnet2-baseline --experiment my-baseline-test
python main.py --path-follower --experiment my-path-follower-test

Record training data for imitation learning / behavioral cloning

python main.py --record --jitter-actions --sync

Note that we recorded the baseline dataset in sync mode which is much slower than async mode. Async mode probably is fine to record in, we just haven't got around to trying it out for v3.

Optional: Convert to HDF5 files to tfrecords (for training MNET2)

python main.py --hdf5-2-tfrecord

Train on recorded data

python main.py --train [--agent dagger|dagger_mobilenet_v2|bootstrapped_ppo2] --recording-dir <your-hdf5-or-tfrecord-dir>

Train on our dataset

python main.py --train --recording-dir <the-directory-with-the-dataset> [--agent dagger|dagger_mobilenet_v2|bootstrapped_ppo2]

Tensorboard

tensorboard --logdir="<your-deepdrive-home>/tensorflow"

Where <your-deepdrive-home> below is by default in $HOME/Deepdrive and can be configured in $HOME/.deepdrive/deepdrive_dir

Running unit tests

pytest tests/unit_tests/test_sanity.py

Key binds

  • Esc - Pause (Quit in Unreal Editor)

  • Enter - Pause with no menu

  • P - Pause in Unreal Editor

  • 1 - Chase cam

  • 2 - Orbit (side) cam

  • 3 - Hood cam

  • 4 - Free cam (use WASD to fly)

  • Space - Handbrake

  • Alt+Tab - Control other windows / Show mouse

  • ` - Unreal console - do things like stat FPS

  • M - Drive the car with the keyboard WASD - be sure sync is off - Also known issue: Only works in path-follower mode right now

  • Ctrl-number - Change sun position - works for 1 => 7

  • B - Show vehicle bounding boxes

  • N - Show vehicle collision boxes

  • Page Up - Next vehicle

  • Page Down - Prev vehicle

Observation data

All values returned in the observation keep Unreal conventions, specifically

  • All distances are in centimeters per Unreal's default data type

  • All rotations / angular values are in the order of roll, pitch, yaw in degrees

  • x,y,z is forward, right, up

{ 

  'acceleration': array([-264.26913452, -227.578125  ,  105.16122437]),
  'angular_acceleration': array([210980.234375, 105423.765625,  38187.28125 ]),
  'angular_velocity': array([2.59908962, 3.8214705 , 1.87282801]),
  'brake': 0.0,
  'camera_count': 1,
  'cameras': [{  'aspect_ratio': 1.0,
                 'capture_height': 227,
                 'capture_width': 227,
                 'depth_data': array([0.9995  , 0.9995  , 0.9995  , ..., 
                     0.005146, 0.005146, 0.005146], dtype=float16),
                 'horizontal_field_of_view': 1.7654,
                 'id': 1,
                 'image': array([[[ 40.,  78., 110.] ..., dtype=float32),
                 'image_data': array([0.283  , 0.557  , 0.82, 
                     ..., 0.02321, 0.02574, 0.02599], dtype=float16),
                 'image_raw': array([[[144, 195, 233]..., dtype=uint8),
                 'type': 0
              }],
  'capture_timestamp': 4132.511303506,
  'dimension': array([514.99609375, 514.99609375,  91.1796875 ]),  # Vehicle dimensions
  'distance_along_route': 70658.828125,  # centimeters of progress made along route to destination
  'distance_to_center_of_lane': 1038.8463134765625,  # centimeters to center of lane
  'world': { 'vehicle_positions': [ [ -15800.8193359375,
                                      38030.23828125,
                                      19894.62890625],
                                    [ -13854.9384765625,
                                      39296.91015625,
                                      20041.6484375],
                                    [ -10323.2744140625,
                                      39767.69921875,
                                      20409.265625],
                                    [ -6528.05810546875,
                                      38875.75390625,
                                      21034.83984375],
                                    [ 4577.29150390625,
                                      36155.37890625,
                                      22704.166015625]]},
  'distance_to_next_agent': 326125.625, # Next agent in our lane 
  'distance_to_next_opposing_agent': -1.0,  # Next agent in opposite lane
  'distance_to_prev_agent': 30758.2734375,   # Next agent in our lane
  'forward_vector': array([-0.8840133 , -0.4375411 , -0.16455328]),
  'gym_action': [0, 1, 0, 0, True],
  'gym_done': False,
  'gym_reward': -2.4653405387152016,
  'handbrake': 0,
  'is_game_driving': 0,
  'is_passing': 0,
  'is_resetting': 205,
  'lap_number': 0,
  'last_collision': { 'collidee_velocity': array([0., 0., 0.]),
                      'collision_location': 'rear_right_fender',
                      'collision_normal': array([0., 0., 0.]),
                      'time_since_last_collision': 0.0,
                      'time_stamp': 4105.741911045,
                      'time_utc': 1562958070},
  'position': array([-10163.55371094,  17115.17382812,  22500.29492188]),
  'right_vector': array([-0.8840133 , -0.4375411 , -0.16455328]),
  'rotation': array([ 0.10010731, -0.16530512, -2.68199444]),
  'route_length': 273551.21875,
  'episode_return': { 'avg_kph': 0,
             'closest_vehicle_cm': 15812.662932649602,
             'closest_vehicle_cm_while_at_least_4kph': 15812.662932649602,
             'cm_along_route': 18730.72265625,
             'collided_with_vehicle': False,
             'collided_with_non_actor': True,
             'end_time': '1969-12-31T16:00:00-08:00',
             'episode_time': 11.5,
             'gforce_penalty': 90.68476390028613,
             'got_stuck': False,
             'lane_deviation_penalty': 255.7695629358121,
             'max_gforce': 0.8785649610557551,
             'max_kph': 138.7572978515625,
             'max_lane_deviation_cm': 1038.8463134765625,
             'num_steps': 0,
             'prev_progress_pct': 6.70844576752594,
             'progress_pct': 6.8472451856879175,
             'progress_reward': 0.0,
             'route_length_cm': 273551.21875,
             'speed_reward': 371.6081579415893,
             'start_time': '2019-07-12T12:00:59.003417-07:00',
             'time_penalty': 0.0,
             'total': 25.15383110549117,
             'wrong_way': False},
  'speed': 3854.369384765625,
  'steering': 0.0,
  'throttle': 1.0,
  'up_vector': array([-0.8840133 , -0.4375411 , -0.16455328]),
  'velocity': array([-3404.32958984, -1700.12841797,  -613.90289307]),
  'view_mode': 'normal',
}

Benchmark

Dataset

100GB (8.2 hours of driving) of camera, depth, steering, throttle, and brake of an 'oracle' path following agent. We rotate between three different cameras: normal, wide, and semi-truck - with random camera intrisic/extrinsic perturbations at the beginning of each episode (lap). This boosted performance on the benchmark by 3x. We also use DAgger to collect course correction data as in previous versions of Deepdrive.

  1. Ensure you have 104GB of free space

  2. Download our dataset of mixed Windows (Unreal PIE + Unreal packaged) and Linux + variable camera and corrective action recordings

    (generated with --record)

    cd <the-directory-you-want>
    aws s3 sync s3://deepdrive/data/baseline_tfrecords .

    or for the legacy HDF5 files for training AlexNet

    aws s3 sync s3://deepdrive/data/baseline .
tensorboard --logdir <your-unzipped-dir>

Architecture

Frame rate issues on Linux

Tensorflow install tips

  • On Windows, use standard (non-CUDA packaged) display drivers which meet the min required. When installing CUDA, do a custom install and uncheck the display driver install.

OpenGL

glxinfo | grep OpenGL should return something like:

OpenGL vendor string: NVIDIA Corporation
OpenGL renderer string: GeForce GTX 980/PCIe/SSE2
OpenGL core profile version string: 4.5.0 NVIDIA 384.90
OpenGL core profile shading language version string: 4.50 NVIDIA
OpenGL core profile context flags: (none)
OpenGL core profile profile mask: core profile
OpenGL core profile extensions:
OpenGL version string: 4.5.0 NVIDIA 384.90
OpenGL shading language version string: 4.50 NVIDIA
OpenGL context flags: (none)
OpenGL profile mask: (none)
OpenGL extensions:
OpenGL ES profile version string: OpenGL ES 3.2 NVIDIA 384.90
OpenGL ES profile shading language version string: OpenGL ES GLSL ES 3.20
OpenGL ES profile extensions:

You may need to disable secure boot in your BIOS in order for NVIDIA’s OpenGL and tools like nvidia-smi to work. This is not Deepdrive specific, but rather a general requirement of Ubuntu’s NVIDIA drivers.

Development

To run tests in PyCharm, go to File | Settings | Tools | Python Integrated Tools and change the default test runner to pytest.

- operates over the network using the

Built-in C++ / agent that can overtake in the canyons map

Grab the

Additional observation data can be exposed without compiling C++ or Blueprints by accessing the Unreal API with .

Agents are automatically graded via

Get the

If you'd like to check out our Tensorboard training session, you can download the 1GB , unzip, and run

and checkout , which graphs wall time.

If you experience low frame rates on Linux, you may need to install NVIDIA’s display drivers including their OpenGL drivers. We recommend installing these with CUDA which bundles the version you will need to run the baseline agent. Also, make sure to . If CUDA is installed, skip to testing .

Make sure to install the CUDA / cuDNN major and minor version the Tensorflow instructions specify. i.e. CUDA 9.0 / cuDNN 7.3 for Tensorflow 1.12.0. These will likely be older than the latest version NVIDIA offers. You can see all .

Use the packaged install, i.e. deb[local] on Ubuntu, referred to in

If you are feeling dangerous and use the runfile method, be sure to follow on how to disable the Nouveau drivers if you're on Ubuntu.

Also, disable SciView per .

Cloud setup instructions
Remote agent example
deepdrive remote api
FSM
PID
UnrealEnginePython
Botleague
AWS CLI
tfevents files here
this view
CUDA releases here
this guide
NVIDIA’s instructions
this answer
Create a Miniconda env
See Tensorflow install tips
dataset
plugin your laptop
OpenGL
Deepdrive Architecture